Global source-receptor relationships for mercury deposition under present-day and 2050 emissions scenarios.

نویسندگان

  • Elizabeth S Corbitt
  • Daniel J Jacob
  • Christopher D Holmes
  • David G Streets
  • Elsie M Sunderland
چکیده

Global policies regulating anthropogenic mercury require an understanding of the relationship between emitted and deposited mercury on intercontinental scales. Here, we examine source-receptor relationships for present-day conditions and four 2050 IPCC scenarios encompassing a range of economic development and environmental regulation projections. We use the GEOS-Chem global model to track mercury from its point of emission through rapid cycling in surface ocean and land reservoirs to its accumulation in longer lived ocean and soil pools. Deposited mercury has a local component (emitted Hg(II), lifetime of 3.7 days against deposition) and a global component (emitted Hg(0), lifetime of 6 months against deposition). Fast recycling of deposited mercury through photoreduction of Hg(II) and re-emission of Hg(0) from surface reservoirs (ice, land, surface ocean) increases the effective lifetime of anthropogenic mercury to 9 months against loss to legacy reservoirs (soil pools and the subsurface ocean). This lifetime is still sufficiently short that source-receptor relationships have a strong hemispheric signature. Asian emissions are the largest source of anthropogenic deposition to all ocean basins, though there is also regional source influence from upwind continents. Current anthropogenic emissions account for only about one-third of mercury deposition to the global ocean with the remainder from natural and legacy sources. However, controls on anthropogenic emissions would have the added benefit of reducing the legacy mercury re-emitted to the atmosphere. Better understanding is needed of the time scales for transfer of mercury from active pools to stable geochemical reservoirs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impacts of the Minamata convention on mercury emissions and global deposition from coal-fired power generation in Asia.

We explore implications of the United Nations Minamata Convention on Mercury for emissions from Asian coal-fired power generation, and resulting changes to deposition worldwide by 2050. We use engineering analysis, document analysis, and interviews to construct plausible technology scenarios consistent with the Convention. We translate these scenarios into emissions projections for 2050, and us...

متن کامل

Projections of global mercury emissions in 2050.

Global Hg emissions are presented for the year 2050 under a variety of assumptions about socioeconomic and technology development. We find it likely that Hg emissions will increase in the future. The range of 2050 global Hg emissions is projected to be 2390-4860 Mg, compared to 2006 levels of 2480 Mg, reflecting a change of -4% to +96%. The main driving force for increased emissions is the expa...

متن کامل

Present and future nitrogen deposition to national parks in the United States: critical load exceedances

National parks in the United States are protected areas wherein the natural habitat is to be conserved for future generations. Deposition of anthropogenic nitrogen (N) transported from areas of human activity (fuel combustion, agriculture) may affect these natural habitats if it exceeds an ecosystem-dependent critical load (CL). We quantify and interpret the deposition to Class I US national pa...

متن کامل

Global 3-D land-ocean-atmosphere model for mercury: Present-day versus preindustrial cycles and anthropogenic enrichment factors for deposition

[1] We develop a mechanistic representation of land-atmosphere cycling in a global 3-D ocean-atmosphere model of mercury (GEOS-Chem). The resulting land-oceanatmosphere model is used to construct preindustrial and present biogeochemical cycles of mercury, to examine the legacy of past anthropogenic emissions, to map anthropogenic enrichment factors for deposition, and to attribute mercury depos...

متن کامل

Future trends in environmental mercury concentrations: implications for prevention strategies

In their new paper, Bellanger and coauthors show substantial economic impacts to the EU from neurocognitive impairment associated with methylmercury (MeHg) exposures. The main source of MeHg exposure is seafood consumption, including many marine species harvested from the global oceans. Fish, birds and other wildlife are also susceptible to the impacts of MeHg and already exceed toxicological t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 45 24  شماره 

صفحات  -

تاریخ انتشار 2011